If it's not what You are looking for type in the equation solver your own equation and let us solve it.
52x^2+40x+1=0
a = 52; b = 40; c = +1;
Δ = b2-4ac
Δ = 402-4·52·1
Δ = 1392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1392}=\sqrt{16*87}=\sqrt{16}*\sqrt{87}=4\sqrt{87}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{87}}{2*52}=\frac{-40-4\sqrt{87}}{104} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{87}}{2*52}=\frac{-40+4\sqrt{87}}{104} $
| 2(5n-2)=8 | | 2n+3.5=41.5 | | -1/3x+5/6x+2=1/2+1/6x | | 2n+3.5=33.5 | | (-3x+6)/4=3 | | 5^x+5^(x-1)=750 | | 3x2-4x=12-x3 | | 5^x+5^x-1=750 | | 2.50+12.50c=7.50 | | y-1/4-2y+5/3=1/6 | | 2h-5/3-h+8/5=0 | | 157+3b=157-3b | | n/3+7=2n | | 20.88k=145 | | 4b^2-43b+63=0 | | 13=13r-11 | | 9-(8p-5)+4=6(2p+1) | | 4-5(x-7)=35 | | I.3x2–5x–12=0, | | 565.2=4/3x3.14(6)3 | | s=-16(1008)^2=256(1008) | | 4x-16x+64=0 | | 5/3X+3=x+7 | | 12x^2-180x-204=0 | | 12x^2-180x-192=0 | | 3/2x+1/9=1/6x-1/3 | | (3x-2)=(7x-6) | | 3(4-x)-(2x+3)=5+3(x-4) | | 4(2-x)-(x+1)=5+6(x-7) | | 4(2-x)-(x+1=5+6(x-7) | | -2x^2-24x-71=0 | | 0.07(2t-5)=0.14(t-3)+0.07 |